
CICS TS Performance Tuning Tutorial
Eugene S Hudders

C\TREK Corporation
ehudders@ctrek.com

407-469-3600
August 11, 2011
Session # 09619



DISCLAIMERS/TRADEMARKS

• YMMV

• Remember the Political Factor

• CICS/VS, CICS/MVS, CICS/ESA, CICS TS, COBOL LE,
COBOL 2, VSAM, DB2, OS/390, MVS, z/OS and z/VSE
Are Trademarks of the International Business
Machines Armonk, NY



Agenda

• Introduction
• NSR

• Introduction
• NSR File Definitions
• NSR Buffer Definitions
• NSR Performance
• Recommendations

• LSR
• Robin Hood Theory
• Introduction to LSR
• LSR Tuning Areas
• Overlooked LSR Tuning Areas
• Recommendations

• Closing



Introduction

• CICS uses three techniques to handle VSAM files within CICS TS:
• Non-Shared Resources (NSR)
• Local Shared Resources (LSR)
• Record Level Sharing (RLS)

• In recent years, new VSAM features announced for CICS have
been LSR oriented

• The major difference between the three techniques lies in the
“ownership” of the resources
• NSR resources are used exclusively by the file
• LSR resources are shared between participating files
• RLS resources are “owned” by a separate address space

(SMSVSAM)



Introduction

• I/O generates CPU usage
• Application request to
• CICS FC programs to
• VSAM to
• SVC Handler to
• IOS
• Start the I/O (SSCH) and eventually back to
• CICS to have task wait
• Process I/O Interrupt
• Create SRB
• Dispatch the SRB to Post Completion
• To the CICS Dispatcher that dispatches the task when its turn occurs

• To improve response time and reduce CPU overhead, you need to
eliminate I/O

• Find the data/index in a buffer called a Look-Aside Hit
• CPU requirements for a Look-Aside Hit is much lower
• Return to CICS and application come from VSAM



The Very Big I/O Picture

CICS TS ADDRESS SPACE

APPLICATION CICS TS VSAM

OPERATING SYSTEM HARDWARE

CACHE

DASD

EXEC CICS

READ FILE

DFHEIP

DFHEIFC

DFHFCFR

DFHFCVS

DFHFCVR

Analyze
Request

LOOKASIDE?

NO

YES

PREPARE
ENVIRONMENT

ISSUE SVC 0

INTERRUPT HANDLER

SUPERVISOR SVC
HANDLER

I/O SUPERVISOR

SSCH

PATH

CU

DISPATCHER

PLACE TASK IN A
WAIT AND DISPATCH
ANOTHER TASK

I
N
T
E
R
R
U
P
T

I/O SUPERVISOR

GENERATE SRB

INTERRUPT HANDLER

SRB ROUTINE WHICH POSTS THE
EXTENDED ECB FOR THE
REQUEST – ONCE POSTED THE
CICS DISPATCHER WILL RE-
DISPATCH THE TASK

STUB

Note: the application file request can
generate several I/O operations
depending on the number of index levels
and one for the data request

CONTINUE



Non-Shared Resources
NSR



Introduction to NSR

• NSR advantages include:
• Resources are reserved so one file can be specifically

tuned

• Allows for chained read operations that can give better
sequential performance
• BROWSE
• CA Splits
• Mass inserts

• Does not support Transaction Isolation

• Does not support VSAM Threadsafe

• NSR = BATCH Processing



NSR File Definition

• A file is defined as NSR by specifying LSRPOOLNUM
(NONE)

• String number defines the number of concurrent file
accesses allowed

• One BUFND and one BUFNI (if applicable) is required
per string

• Minimum buffer allocations:
• BUFND is string number plus one

• Extra buffer is only used for split processing

• BUFNI is string number



NSR File Definition

• String definition for an NSR file can be a challenging task
• Many NSR files are over allocated in strings when considering

the I/O activity against the file

• The major reason is that NSR allows duplicate CIs to exist
between strings

• NSR allows STARTBR/READNEXT/READ for UPDATE sequence
without an intervening ENDBR

• This results in two strings being allocated to the task
• The requested CI appears 2X in VS
• As a result, many files would appear to be deadlocked due to lack of

strings
• This type of request will not work in LSR

• Remember that a string needs a BUFND/BUFNI
• Eliminate strings in favor of more buffers



NSR File Definition

• Additional buffers can be allocated
• Extra BUFND – will be used in sequential operations

• All available buffers will be allocated to the 1st sequential
request

• Extra BUFNI – will be used to store Index Set (IS)
indices (high level indices)

• Sequence Set Indices (SSI) are never read into the
extra BUFNIs
• SSI CIs are read into the string index buffer
• No look aside to other string buffers are done



NSR Buffer Definition

• Example # 1:
• STRNO = 2 BUFND = 3 BUFNI = 2

STRNO 1 STRNO 2

BUFND 1

BUFNI 1

BUFND 3BUFND 2

BUFNI 2

Used For Split Processing



NSR Buffer Definition

• Example # 2:
• STRNO = 2 BUFND = 4 BUFNI = 3

STRNO 1 STRNO 2

BUFND 1

BUFNI 1

BUFND 3BUFND 2

BUFNI 2 BUFNI 3

BUFND 4

EXTRA BUFND CAN BE USED TO
READ ONE RECORD AHEAD IN THE
CASE OF A BROWSE AND THE
EXTRA BUFNI TO HOLD 1 INDEX SET
RECORD



NSR Performance

• Why would you want extra BUFNDs?

• In the case of a BROWSE request, to read ahead a
number of CIs to improve performance of the task

• In the case of Mass Insert, to write behind a series
of CIs to improve task performance

• In the case of CA Splits, to be able to move more
than one CI at a time to the new CA

• Overall, extra data buffers can speed up the process
and reduce I/O requests to the file



NSR Performance

• What is the hidden agenda?
• Browse

• The number of BUFNDs defined should contain the approximately
the same number of records read (READNEXT) by the program

• For example, if a CI can contain 5 records and the average # of
READNEXT operations issued is 20, then a BUFND specifying 4
additional buffers (5 records/CI*4 read ahead buffers) would be fine

• However, what programmer knows on the average how many
READNEXT operations are issued to a file?

• Also, only the 1st BROWSE request would benefit
• What happens if the BROWSE is ended (ENDBR) before the 20

READNEXT operations are done?
• Adding additional buffers for sequential BROWSE processing will

increase the task response time plus elongated I/O operation will
result

• In addition, having the data in storage is good for this task but may
affect the response of other tasks in the system



NSR Performance

• Mass Inserts
• The number of buffers should be around the same number of

writes (WRITE) issued to the file at one time
• Same logic as the BROWSE

• However, if the number of writes ends before all the buffers are full,
then there is no I/O penalty as in the case of a BROWSE

• CA Splits
• The number of buffers should be large enough to copy ½ of a CA at

time
• However, if the file does Mass Inserts or BROWSE operations,

there is no way to segregate the buffers for one particular use



NSR Performance

• What is the best approach for files that are heavily or
mainly browsed?
• If too many buffers are read, performance of other tasks

may be affected

• The key is to try and get a CISZ that generally
accommodates the # of READNEXT commands issued
• If too many, try to get a large multiple

• This approach can be used for LSR pool files too



NSR Performance

• Why would you want extra BUFNIs?

• To improve the look-aside and reduce physical I/O

• Two types of index look asides occur for an NSR file
• The 1st look aside is for the Index Set records that are in

extra BUFNI buffers

• The 2nd look aside is within the string buffers to see if the
Sequence Set Index and/or the data CI are present

• No look aside possible to other string buffers



NSR Performance

• Additional index buffers allows VSAM to load the Index
Set records
• User should allocate sufficient BUFNIs as there are Index

Set CIs in the file

• Consideration should be given to adding additional buffers
if the file reflects CA splits

• Data CA splits can cause index CA splits creating new
index set records



NSR Performance

• Determining the number of BUFNIs required entails
computing how many Sequence Set Index (SSI)
records exist in the file

• There is one Sequence Set record per data CA

• This is a one to one relationship



NSR Performance

• Compute:
1)# CAs = (Data HURBA / (# CI/CA*Data CISZ) this

represent the # of Sequence Set Index records in the
file

2)From LISTCAT get the total number of Index records in
the file and determine the number of Index Set records
in the file: (Total Number of Index Records – # of CAs)

3)Determine the # of BUFNIs = (Total # Of Index Set
records + # of strings + CA split adjustment)

4)CA Split adjustment is any figure from zero to “n”,
where “n” is the # of additional Index set records
created as a result of CA splits



NSR Performance

Data Information

Index Information

Need these two values

Need these two values

Need the number of index records

LISTCAT Extract

Are there any splits?

Determine number of
IX Levels



NSR Performance

• Example using previous LISTCAT information

• Data CISZ 18K (18,432)

• CI/CA 45

• Bytes/CA 829,440 (18432*45)

• CA splits Yes

• # of IX records 4

• HURBA 2,488,320

• # of IX levels 2

• (2488320/829440)=3 CAs or Sequence Set Records

• (4-3)=1 Index Set Record

• If STRNO=5, then (5+1+2)=8 BUFNI request for the file. The +2 is a
buffer for future CA splits at the index level. The CA adjustment
is optional and the value can vary



NSR Buffer Definition

• Example # 1 – VSAM 2 Index Levels:
• STRNO = 2 BUFND = 3 BUFNI = 2

• Requires three I/Os (2 index and 1 data)

• No opportunity for look aside

STRNO 1 STRNO 2

BUFND 1

BUFNI 1

BUFND 3BUFND 2

BUFNI 2

There is no look aside possible
because the index buffer gets
overlaid with every request
forcing three I/O operations



NSR Buffer Definition

• Example # 2 – VSAM 2 Index Levels:
• STRNO = 2 BUFND = 4 BUFNI = 3

• After 1st read, each request would require a maximum of two reads or a 33%
I/O operations savings

STRNO 1 STRNO 2

BUFND 1

BUFNI 1

BUFND 3BUFND 2

BUFNI 2 BUFNI 3

BUFND 4

The single Index Set record is
loaded into the extra BUFNI
and does not have to be re-read

Additional look aside
can occur at the string
buffers, potentially
saving additional I/O



NSR Recommendations

• NSR files should be reviewed to see why they are not in LSR
for better performance

• For example, Share Options 4 file

• Command Level Browse restrictions

• If the file is to be in NSR
• Ensure valid CISZ for files that are browsed

• Ensure sufficient BUFNIs allocated to hold the entire Index Set indices
in buffers

• Ensure that excess strings are eliminated and the storage used to
allocate correct file buffering

• Do not over allocate BUFND unless the file is prone only to CA splits

• If NSR must be used and files takes CA splits, consider
activating the CO TCB (SUBTSKS=1 in SIT)

• NSR and Transaction Isolation are incompatible

• NSR is not supported under VSAM Threadsafe



Local Shared Resources
LSR



Robin Hood Theory

• Tuning LSR files is simply applying the Robin Hood
theory in reverse

• In Sherwood Forrest Robin stole from the rich to give
to the poor

• In LSR you steal from the poor to give to the rich!!!!!
• Poor = Low to Medium Activity Files
• Rich = Most Active Files

• In other words the major contribution that low activity
files provide to LSR are their resources so that higher
activity files can use them (Cruel Reality)



Introduction to LSR

• LSR advantages include:

• More efficient VS use because resources are shared
• Better look-aside because index buffers can maintain the

Sequence Set Index records
• Tends to be more self-tuning because buffers are

allocated on an LRU basis keeping information of the
more active files in the buffers at the expense of less
active files

• Only one copy of a CI allowed (better read integrity)
• Can allocate up to 255 pools to segregate files
• Supports Transaction Isolation (TI)
• Supports VSAM Threadsafe (Local VSAM)



LSR Tuning Areas

• Pool definition – dynamic or static
• Buffer hit ratios
• Buffer monopolization
• Number of LSR pools
• Overlooked tuning opportunities

• Buffer fragmentation
• Buffer vs. CISZ
• Page allocation
• Maximum key size
• Number of strings

• LSR candidates



Dynamic vs. Static Pool Definition

• Dynamic Definition
• Advantages

• Easy to implement

• Little SysProg intervention

• Disadvantages
• Combined buffer pool for data

and index

• Resource allocation based on
a percent

• Slow initialization

• Cannot tune specific buffer
sizes

• Static Definition

• Advantages
• Separate buffer pool for data

and index can be defined

• Resource allocation can be
optimized by activity

• Faster initialization

• Disadvantages
• Requires SysProg intervention

• Can be prone to errors

• Requires planning



Pool Definition

• Recommendation

• Define LSR Pools Explicitly

• Determine Individual File Requirements
• Data and Index (If Applicable) CISZ required
• Maximum Length Key
• Strings

• Get “Big Picture” of Requirements
• CICS Performance Tool/Monitor
• CICS Statistics (EOD)
• Dynamic Definition – One Time



LSR Pool Measurement

• LSR pool effectiveness is based on look-aside hit
ratios
• Generally accepted hit ratios are:

• Data – 80%+
• Index – 95%+
• Combined – 93%+

• Buffer tuning should concentrate on improving the
index hit ratio first
• Generally, index I/O is higher than the data
• Virtual and real storage investment to improve index hit ratio is

less due to smaller CISZ associated with the index component



LSR Pool Measurement

• Important note:

• LSR buffer attainments can be misleading

• If the 4 KB buffer reflects a hit ratio of 85%, this
does not mean that every file is getting an 85% look-
aside hit ratio

• The 85% is an average of all the files using this
buffer size
• Some get a higher attainment

• Others get a lower attainment



LSR Pool Measurement

• Data buffer tuning is highly dependent on access
patterns
• Good look-aside hit ratios usually requires a substantial

storage investment (80%+)

• The major cause Is that the data component is usually very
large (vs. index component)

• Good hit ratios usually result in files with:
• Sequential activity

• Read for Update/Rewrite/Delete

• Concentrated read activity



LSR Pool Measurement

• Data buffer tuning is highly dependent on access patterns
• Bad hit ratios usually result in files with:

• Disperse read activity (very large files)
• Share Options 4

• Recommendation
• Buffer tuning is usually a “trial and error” process in determining the number

of buffers to add to each buffer size
• Reiterative process

• You add buffers
• You measure
• If objective met, temporary end, else go back to add buffers
• Temporary end because things change and require periodic observation

• Tune buffer pools and CI sizes individually
• Set Realistic Objectives, for Example:

• Data – 80%
• Index – 95%
• Combined – 93%

• Define a minimum of three 32K catch-all buffers or both the data and index
component



Buffer Monopolization

• Buffer monopolization
• “Monopolization” refers to the buffer size within the

LSR pool
• Theory behind LSR is to share resources when

needed
• So what can be bad if the principal files (most active) control

a high percentage of the buffers?
• Even at the expense of low activity files

• How do you determine if a file is monopolizing a
particular buffer size?
• I/O activity
• Buffer hit ratio
• Number of buffers held (by CISZ)



Buffer Monopolization

• Buffer pool monopolization
• Need a CICS tuning/monitor to determine the number of

buffers being held by a file

• Important if principal files are not providing a good response
time

• Remember the reverse “Robin Hood Theory”
• “Rob from the poor to give to the rich”

• Where the “rich” are your most important active files

• Point of Diminishing Return
• Keep adding buffers until the higher activity files do not

require more



How Many Buffer Pools?

• Number of defined LSR pools
• Two schools of thought

• School 1 – Use as many pools as possible so that files can
be segregated to reduce buffer contention and/or
interference

• School 2 – Use as few as possible pools so that resources
can be used more efficiently

• Considerations
• Are the pools allocated with a “Fudge Factor”?
• Which files are more important so that resources should be

allocated to them?



How Many Buffer Pools?

• There are 255 (MVS/CICS TS V4.R2) (originally 8) or
15 (VSE) LSR Pools available

• The use of multiple buffers made sense with the original release of LSR
support in CICS because the buffer search algorithm was sequential

• Larger pools increased CPU time to search
• Breakeven point was around 200 buffers

• Another major benefit for LSR was virtual storage savings vs. NSR
• Search algorithm changed to hashing technique

• The Least Recently Used (LRU) algorithm used by
VSAM is self-tuning

• Access to the pools was single threaded on the QR
TCB

• Having multiple pools did not mean that there could be any overlapped
access to different pools



How Many Buffer Pools?

C
P
U

U
T
I
L
I
Z
A
T
I
O
N

NUMBER OF BUFFERS ALLOCATED1 32K

Hashing Algorithm

Sequential Search

Breakeven point for sequential search was
quoted to be around 200 buffers



How Many Buffer Pools?

• There may be some cases where you may want to define extra
pools

• Data Tables
• Output operations go against the VSAM file

• LSR pool used for look-aside for records before going to disk

• ROT for Data Tables = 90%+ Read Operations
• Low activity to the pool will reduce look-aside capacity

• Define a separate pool for all data tables giving more buffers to the
index component

• Favor one or more File
• Important file(s) that you want to give special attention and do not want any

contention for buffers or strings

• A pool that needs more than 255 strings



How Many Buffer Pools?

• LSR VSAM Threadsafe files
• Allows for the use of Open TCBs to handle VSAM requests

• Prior to CICS TS V4.R2 you had 8 LSR pools
• CICS TS V4.R2 increased the number to 255

• Allows the access to different subpools simultaneously
(different files) from different TCBs

• Lock mechanism is used to protect integrity

• Multiple pools for DB2/MQ CICS regions

• In case of an FOR single pool is recommended as VSAM
Threadsafe is not available (FCQRONLY=YES)

• IPIC supports threadsafe Function Shipping (4.2)
• FCQRONLY=NO)



How Many Buffer Pools?

• LSR VSAM Threadsafe files
• Allows the execution of File Control commands on Open

TCBs

• As the LSR pools can be accessed by multiple TCBs
simultaneously, a lock structure was developed to ease
the single thread access to LSR pools
• Separate executing tasks on different TCBs can access different

LSR Pools simultaneously
• Therefore, consideration should be given to the use of multiple pools

with VSAM threadsafe to improve throughput

• Tasks must be defined as threadsafe to use VSAM threadsafe



How Many Buffer Pools?

• LSR VSAM Threadsafe file distribution
• Prior to CICS TS V4.R2 only 8 LSR pools are

available
• Distribution of files to obtain overlap requires planning due

to the limited number of pools
• Have one general pool (e.g., # 1) for non-threadsafe

applications and one for data tables (if any) and use the
remainder to distribute the files

• If limited number of threadsafe applications, distribute the
remaining pools among the threadsafe applications

• Determine application activity and assign the remaining
pools by application

• May require more virtual/real storage



How Many Buffer Pools?

• LSR VSAM Threadsafe file distribution
• CICS TS V4.R2 increased the number of LSR pools

available 255
• Distribution files is much easier due to increased number of

pools available
• Assign one general pool (e.g., # 1) for non-threadsafe

applications and one for data tables (if any)
• Allocate separate pools to important highly active files
• May require more virtual/real storage
• For FOR regions use IPIC which has a threadsafe CSMI



Overlooked LSR Tuning Areas

• Buffer Fragmentation
• Only Eleven Valid CISZ for LSR Buffers (K)

• 0.5 1.0 2.0 4.0 8.0 12.0
• 16.0 20.0 24.0 28.0 32.0

• Therefore, a 2.5K Byte CISZ Would Use a 4K LSR
Buffer

• If a 4K Buffer Was Not Available, Then the Next
Largest Available Buffer Is Used

• Some Fragmentation May Be Desired for Certain
CISZ (e.g., non VSAM/E – 18.0K)



Overlooked LSR Tuning Areas

• Buffer Fragmentation

• Avoid Unnecessary Fragmentation (e.g., a 6K CISZ
Using a 12K Buffer)

• Certain Default Index CISZ Should Be Forced to an
LSR CISZ (e.g., 1536 to 2048 or 2560 to 4096)

• Virtual Fragmentation Results in Real Storage
Fragmentation



Overlooked LSR Tuning Areas

• LSR Buffer vs. File CISZ Reconciliation
• Best Alternative to Reducing Fragmentation

• Determine File CI Sizes Required and Assign LSR
Pool Buffers to Match
• Number and Size of Buffers
• Number of Strings (Overall)

• Set CISZ Standards (If possible) for LSR Pool Files

• Complex Task, If Done Manually



Overlooked LSR Tuning Areas

• LSR buffer vs. file CISZ reconciliation
• Some installations simply define a certain number

of buffers for every possible buffer Size (11 buffer
sizes possible in an LSR pool)

• Alternate example:
• Suppose you don’t have any 16K buffer users (CISZ range is

14K and 16K files)
• You determine that you want to have twenty 16K buffers

defined (320 K) just in case one day you get a 14K or 16K file
• This allocated storage will not be used – wasted storage

every day of the year
• Instead, why don’t you simply define sixteen 20K buffers

(320K) (or next useable size) that will be used every day



Overlooked LSR Tuning Areas

• Page boundary buffer allocation (Minor)

• VSAM requests buffers on a page boundary and in
page (4K) increments

• Fragmentation that occurs from buffer allocation
should be avoided – loss of virtual storage

• Allocate the following buffers in the following
increments:
• 0.5K Multiple of 8 (0.5K Times 8 = 4K)

• 1.0K Multiple of 4 (1.0K Times 4 = 4K)

• 2.0K Multiple of 2 (2.0K Times 2 = 4K)



Overlooked LSR Tuning Areas

• Maximum key size (Minor)
• Maximum key size is important as all VSAM control

blocks are shared and must be able to
accommodate the largest file key in the shared pool

• If the maximum key size allocated to the pool Is too
small, files with larger keys will not open

• Many installations force the LSR pool key size to
255 bytes

• Although using this maximum can waste storage,
the actual amount wasted depends on the number
of strings allocated times the excess key size

• Decision is installation dependent



Overlooked LSR Tuning Areas

• Number of strings allocated
• Probably only tuned when wait on strings

conditions occur
• String waits can occur If

• Maximum number of strings in the pool is reached
• Maximum number of strings assigned to the file is reached

• Many LSR pools strings are over-allocated
• The objective should be to have sufficient strings to

handle peak periods without having to wait on
strings

• Try to allocate strings so that the high used string
number is around 50 to 60% of the total strings
allocated to the pool

• Before increasing strings due to wait on strings
conditions, make sure that you are attaining your
look-aside hit ratio objectives for the pool



LSR Pool Candidates

• LSR provides the best look-aside algorithm within
CICS

• Generally, files (high, intermediate and low activity)
should be assigned to LSR except:
• Share Options 4 files

• Files that do not follow Command Level guidelines for
accessing VSAM
• Start Browse, Read Next …..Read for Update (Non-RLS)

• High CA split activity files (tune independently)

• LSR Is the gate to new file features within CICS



LSR Recommendations

• LSR Is preferred over NSR buffering
• Superior look-aside hit ratio

• Tuning LSR involves:
• Ensuring proper number of buffers defined

• Achieve installation look-aside hit ratio goals

• Eliminating fragmentation

• Static definition of the pool(s)

• Continuous review – especially when major
application changes occur
• VSAM tuning



Closing

• Use LSR over NSR

• Tune to eliminate I/O – Look-Aside Hits

• Monitor File Statistics periodically to ensure
that Look-Aside Hit Ratio objectives are being
met

• When tuning LSR remember Robin Hood!


